Isambard’s Lad’s not beating about the bush. He was impressed by the first programme of the series, “Engineering Connections” on BBC1 that he saw. It took a single project – in this case the Burj al Arab modern hotel in Dubai – and talked about a wide variety of the engineering problems that had to be solved in the design of the building. They were real engineering problems; not just fluffy aspects of the dressing of the building.
The presenter was Richard Hamilton of Top Gear fame who is not, apparently, an engineer but whose relaxed, light and downbeat approach combined with clear presentational skills were admirably suited to the programme. A professional engineer who is equally skilled in the art of presentation will be rare, The Lad fears. Present company excepted, of course. The engineers who appeared on screen serving as assistants and advisors to Hammond were however, suitably highly skilled in the technology. Neither, at least, did they have leather patches on the elbows of their jackets. Indeed he cannot remember any of them wearing jackets.
Quite a good range of topics were covered and The Lad noted these down. The modern versions of wave energy absorption were vividly modelled in real life, not in a computer. They showed how they were used to protect the foundation island. The overall structure of the hotel had a steel exo-skeleton and the high Dubai, temperature variations meant that it expanded and contracted and this would have caused problems with dimensional changes during building. A clever but simple bolt hole cam arrangement was shown that was able to deal with this feature.
The way that several hundred thousand tons of building stood firmly in stand was also addressed. The modelling of this was one of the more striking coup de theatre. Skin friction between the sand and the piles is claimed to be the secret. Such friction can build from a tiny effect to a large force with interleaving. Hammond hung with his feet off the ground from two books with their pages interleaved only. No glue or clamping force.
An entirely different problem was at first seemingly only a fluffy one. How do you get the jets of water in the foyer fountains to look like ballistic, polished, stainless-steel bars and not like water out of a tap. Maybe a fluffy problem but, anyway, it is not a fluffy solution. The Lad has to confess that he has seen and admired this very effect in a lot of the works of the masters of the Modern Fountain Genre: the Japanese showing just this effect. They make the water flow laminar and not turbulent. But he never realised before that this was the secret of the fountains. This difference is central in many problems that engineers deal with in fluid flow projects and aircraft design. Fluids flowing at low speed or high viscosity [a measure of fluid ‘thickness’ as between water and, say, syrup] flow in smooth sheets and the sheets do not mix with each other. Turbulent flow, at higher speed on the other hand, has a lot of mixing or churning as it flows. The TV programme showed how laminar flow is ensured by using tubular flow straighteners.
Then there was the problem of lighting, its dimming and not having the hotel going up in flames. Note though that, typical of the programme’s approach, a real shed went up in real flames. It was the Hammond humour, you know. Light dimmers operate by cutting on and off at high frequency the power supply to the light bulb. This dynamics of this frequent change in current usually causes spikes in the voltage and these could generate significant extra heat compared to steady alternating current. This is an effect of what is known as an adverse Power Factor. In a building like a hotel and some industrial processes this adverse effect must and can be avoided by installing [usually in the basement!] banks of capacitors and inductors to ‘correct the Power Factor’.
The programme was also respectable and important in that it showed that there are different flavours of engineer involved in all such projects of a normal complexity.
“Engineers change the real world”